
Introduction

Curriculum overview

The Introduction to Computer Science with MakeCode Arcade curriculum is a
flexible and approachable course adapted from the TEALS Introduction to
Computer Science curriculum and built with Microsoft MakeCode Arcade as
its core teaching platform. This is a course for a wide range of high school
students from diverse backgrounds. The curriculum has its roots in UC
Berkeley CS 10. The original TEALS course has been successfully
implemented in hundreds of high schools.

Introduction to Computer Science with MakeCode Arcade is an engaging
course that explores a variety of basic computational thinking and
programming concepts through a project-based learning environment. Every
unit

culminates in a comprehensive project and roughly 75% of student time is
spent building projects and practicing the skills they are learning.



Figure 1. Link to introductory video on the TEALS program.

Intro to CS Semester 2
Curriculum overview – Page 1

Visual and approachable

This course uses MakeCode Arcade, an approachable and visual
programming system with a rich coding environment for students at any
experience level. This course uses MakeCode Arcade’s block-based
environment during the first semester, making it perfect for introducing
students to coding for the first time. During the second semester, students
transition to using a text-based language.

Document structure

This curriculum uses a flat folder layout for the curriculum documents and
supporting files. Each unit contains an instructor overview document, which
includes learning objectives, a pacing guide, CSTA mapping, and a word wall
(glossary).

Within each unit, lessons are grouped into folders. Most lessons contain the
following documents:

Bell ringer. The bell ringer activity can be completed by the students as
they enter the classroom. An accompanying slide is often provided in



the lesson’s slide deck that can be displayed as students arrive. Five to
ten minutes at the start of class is typically allocated to the completion
and discussion of the bell ringer activity.

Instructor guide. The instructor guide provides learning objectives and
a pacing guide for the lesson. The instructor guide also contains
teaching tips, a list of solutions provided via the instructor resource
site and other related material.

Slide deck. Instructors can use the PowerPoint presentation to guide
the conversation during the lesson. Many of the presentations contain
scripts that instructors can use and modify as needed.

Student guide. Students should have their own copies of the student
guides, either printed or electronically. The students use the guides
during the lab activities for hands-on practice with the skills developed
during the lesson.

Intro to CS Semester 2
Curriculum overview – Page 2

More information on the structure of lessons is provided later in the section
titled Daily lesson plans.

Helping trios

While they typically work independently on their lab activities, students are
encouraged to rely on their teams as a first line of support, before asking
instructors for assistance. We call these groups helping trios, as groups of
three seem to work best for this application.

Remote instruction

Most of the content can be adapted to remote instruction with little change,
as most of the class time is devoted to independent work by the students. If
your remote instruction platform supports breakout rooms, students can be
placed into breakout rooms with their “helping trios” during the lab activities,
so students can learn to rely on their teammates for assistance before
requesting help from their instructors.

About this curriculum



Philosophy

This curriculum has been designed by the TEALS program to support
computer science teachers and/or volunteer professionals teaching an
introductory computer science course in a high school classroom. The
curriculum was originally based on, and still borrows heavily from, the
Beauty and Joy of Computing Curriculum (BJC) developed at the University
of California, Berkeley. The TEALS curriculum has a heavier focus on the
basic programming components of the course than BJC, sacrificing some of
the advanced programming and conceptual topics that are less appropriate
in an introductory high school classroom.

This curriculum advocates a “hands-on” learning approach in which students’
primary means of learning is through discovery, experimentation, and

Intro to CS Semester 2
Curriculum overview – Page 3

application. To that end, each unit is built around a large, culminating
programming project that exercises the objectives of the unit. In addition,
nearly all lessons in the curriculum include a guided activity of some kind to
allow students to practice with and experience the concepts covered in the
lesson first-hand. Taken together, the lessons provide the skills and support
necessary to enable students to complete the project and demonstrate
mastery of the unit’s objectives. Substantial class time should be provided
for the project in each unit to ensure students can demonstrate mastery of
the skills from each unit before moving on.

Encouraging play

This curriculum encourages the use of “play.” Students are encouraged to
discover on their own, and the MakeCode environment is well-suited for such
activities. It is unlikely that students will “break” the MakeCode
environment, and they should be confident in their ability to work in the
environment without fear.

When they encounter a problem, students should explore the environment
and try to find a solution on their own (e.g., looking in the various drawers
of the toolbox for an appropriate block or code snippet), rather than
immediately raising a hand and requesting assistance from an instructor.
Instructors should reinforce this behavior, guiding the students through the
discovery process with appropriate questions. Instructors should applaud



students who attempt to solve their problems with exploration and play,
even if those attempts are unsuccessful.

Similarly, students who finish activities early should explore the environment
on their own. In the Blocks environment, students can explore blocks that
they have not previously used and attempt to understand how they function.
In the typing environments (JavaScript and Python), students can explore
the toolbox in a similar way, perhaps comparing the code snippets with their
familiar Blocks counterparts. Students who learn something new should be
encouraged to share their discoveries with their teammates and, perhaps,
with the entire class. Programmers learn about new languages, features and
frameworks in the same way; students should begin using and honing these
skills early in their careers.

Intro to CS Semester 2
Curriculum overview – Page 4

List of units
FIRST SEMESTER (BLOCKS)

Unit Name Description

0 Beginnings Students learn about the course,
classroom environment, algorithms, and
MakeCode Arcade environment.

1 Sprites Students learn the basics of the core
entity in MakeCode Arcade: the sprite.

2 Event handlers
and variables

Students learn about event handlers
available in MakeCode Arcade. Students
are also introduced to variables, strings,
and decision structures.

3 Loops and arrays Students learn about definite and
indefinite loops and their application to
arrays. Students are also introduced to
searching within an array as well as
frame-based animation.

4 Functions Students learn to write functions as
a problem-solving technique and to
encourage code reuse.



5 Tile maps and
platform games

In this optional unit, students learn about
tilemaps and their myriad uses, including
in platform games.

6 Capstone project Students work in teams to create
complex projects. Students also create
marketing materials for their projects.

Intro to CS Semester 2
Curriculum overview – Page 5

SECOND SEMESTER (JAVASCRIPT / PYTHON)
Unit Name Description

0 A return to Blocks In this optional unit, students revisit the core
concepts that they learned in the Blocks
environment. This unit is intended for
sessions that do not immediately follow a
Blocks session.

1 Introducing
JavaScript or
Python

Students transition to a typing language,
either Static Typescript (a.k.a. JavaScript) or
Static Typed Python (simply called Python in
the course materials). Variables and event
handlers are revisited from the typing
language perspective.

2 Core programming
concepts

Students revisit core topics from units 2 and 3
in the Blocks course, extending their skills
where appropriate. Students work with
variables, decision structures, loops, arrays,
and animations.

3 Functions Students implement functions in their
typing language. They also learn how to
play simple melodies in their typing
language.

4 Introduction to
object oriented
programming

Students learn very basic object-oriented
programming and design techniques,
focusing on subclasses that inherit from the
Sprite class.

5 Tilemaps and
platformers

In this optional unit, students create
projects that leverage tilemaps, including
platform games.



6 Advanced graphics In this optional unit, students work
with advanced graphics techniques,
including parallax and mini maps.

7 Capstone project Students work in teams to create
complex projects. Students also create
marketing materials for their projects.

Intro to CS Semester 2
Curriculum overview – Page 6

Daily lesson plans

Most lesson plans in this curriculum are designed to represent a single
55- minute class period with average pacing. Each class will have slightly
different needs, possibly including different period lengths, student
capabilities, classroom interruptions, and more.

With a few exceptions, each lesson consists of the following components:

Welcome, announcements, and bell work

Five minutes are allotted at the beginning of each day for administrative
tasks such as taking attendance, giving announcements, returning work, and
other necessary actions. During this time, teachers are encouraged to assign
“bell work” (called “bell ringer” activities) for students to work on.

These activities aim to engage students with the subject immediately
upon entering the room, and should be short, clear, and able to be
completed by all students.

Specific “bell ringer” activities are given in the lesson plans, but they
should be chosen by the teacher to reinforce or preview specific topics
with which students have struggled or are expected to struggle most.

Discussion & instruction

Most lessons begin with a brief period of instruction on the topic of the day.
These sections should be kept as brief as possible—the primary means of
student learning in most lessons will be the lab activities.

The goal of the instruction section of the lesson is to motivate the
concepts being exercised in the lab and provide a short demonstration
to help students find the necessary parts of MakeCode Arcade.

Teaching teams should vary the ways in which the instruction is



presented throughout the course, including class discussions,
kinesthetic activities, demonstrations, Socratic seminars, occasional
lectures, and other approaches.

Intro to CS Semester 2
Curriculum overview – Page 7

Activity

The largest portion of time in each lesson is dedicated to a guided activity
that allows students to explore and practice with the day’s key topics. Each
activity is broken down into several parts, each of which consists of several
steps. In general, the steps in a single section build on each other, and each
section covers a new topic or new application.

It is intended that the labs be structured well enough for students to
work on their own, but teachers should feel free to interject at
appropriate points to assess student progress and provide additional
guidance as necessary.

On occasion, multi-part activities involve multiple cycles of instruction
and activities.

Many of the activities include extensions for advanced students who
complete the lab early.

Debrief

After each activity has concluded, time is allotted for teachers to review and
debrief the activities with students. In general, there is not enough time, nor
is there necessarily the need, to go through the lab step by step. Students
should be able to assess their own progress, at least partially, by verifying
that their programs function as specified in the lab.

Rather than presenting solutions to each step of the lab, teachers are
encouraged to use the debrief time to focus on particularly tricky or
noteworthy parts of the lab or to discuss areas where students
struggled.

Debrief time can also be used to compare different approaches to
some of the problems, emphasizing that, in most cases, there is more
than one valid solution.

Whenever possible, use examples of student work rather than
instructor-created solutions during the debrief—this is an excellent



chance to showcase students who solve problems in elegant, creative,
or canonical ways.

Intro to CS Semester 2
Curriculum overview – Page 8

Homework

This curriculum does not assign homework as part of its lessons. Because
this curriculum is intended to be used in a wide variety of classrooms, some
of which may include students that do not have regular access to Internet
enabled computers at home, all work is done during class time. In some
circumstances, assigning some lab activities as homework can enable the
teaching team to regain in-class time for additional lessons or activities, but
this must be done with care. If homework is assigned, then arrangements
must be made so that any students who do not have the ability to complete
the homework at home do not fall behind. Furthermore, it should be
expected that some students will not complete the assigned homework, and
teaching teams must have a way to both assess that homework was
completed and ensure the material is reinforced briefly in class.

Quizzes

To gauge student understanding, unit quizzes have been added. These are
intended as low stakes, formative assessments that allow students to revisit
topics at the end of the unit to reinforce learning. They are open book,
giving students incentive to take good notes. Ideally, the quizzes are not
graded, and students would reflect on the answers they got wrong and learn
from their mistakes. The quizzes and answer keys can be found with the
protected materials for the course.



Intro to CS Semester 2
Curriculum overview – Page 9

Grading

Student work consists of class participation, daily labs, end of unit projects,
and final project.

Accommodations

Reading challenges and pair programming

To accommodate students with varied reading levels, consider combining
“helping trios” with the concept of pair programming. In pair programming,
developers work in pairs with distinct roles. One person, known as the
operator or the driver, works at the computer, operating the keyboard and
mouse and implementing the logic of the program. The other teammate,
known as the reviewer or observer, considers the logic required to solve the
problem at hand and guides the operator on how to craft the code. The
reviewer also monitors the code as it is entered by the operator. Team
members rotate roles frequently.

In our context, one student in the team acts as the operator while the other
teammates are reviewers. The reviewers can read the relevant portion of the
student guide aloud and consider code options, which the operator then
implements. Students should rotate roles frequently, say every three to five
minutes. You can use a timer to remind students to rotate roles.



Visually impaired students

We have attempted to make all documents as accessible as possible.
MakeCode Arcade has a high contrast mode to assist users who are visually
impaired. The code editor for JavaScript and Python is compatible with
screen readers, although the Blocks editor is not.

Intro to CS Semester 2
Curriculum overview – Page 10

Creative Commons Attribution Non-Commercial Share
Alike License

This curriculum is licensed under the Creative Commons Attribution Non
Commercial Share-Alike License, which means you may share and adapt this
material for non-commercial uses as long as you attribute its original source
and retain these same licensing terms.



Intro to CS Semester 2
Curriculum overview – Page 11


